Wednesday, 30 March 2016

God Created the INTEGER - Stephen Hawkings

To Find Modulo of Large Exponent.

Calculate 782 mod 40

[It is carried out using Chinese Remainder Theorm.]
Chinese Remainder Theorem

Maybe just start calculating. Note that 72=499(mod40). So 74811(mod40). We got lucky.
It follows that 780=(716)51(mod40). Thus 782=(780) (72)499(mod40).
In general, repeated squaring, and reduction with respect to our modulus (in this case 40) gets us to high powers fairly quickly.
A more elaborate way is to use Euler's Theorem. If a is relatively prime to m, then aφ(m)1(modm).
Here Ï† is the Euler Ï•-function. We have Ï†(40)=16, so taking a=7 we have a161(mod40). It follows that a80=(a16)51(mod40). So a82a2=49(mod40). But 499(mod40).
Still another way is to factor 40 as 235. We then work separately modulo 8 and modulo 5.
First modulo 8: We have 71(mod8), so 782(1)821(mod8).
Next modulo 5: We have 72(mod5), so 7241(mod5), and therefore 741(mod5). (We could also get this directly by using Fermat's Theorem.) It follows that 7801(mod5), and therefore 7824(mod5).
Now we are looking for the numbers that are congruent to 1 modulo 8 and to 4 modulo 5. For bigger numbers, we can use the Chinese Remainder Theorem. But finding a number congruent to 1modulo 8 and to 4 modulo 5 can also be done without much machinery.
In general, the technique to use depends very much on the modulus m. If it is huge, and we do not know its prime factorization, then the Binary Method of exponentiation is quite efficient.

Reference Link:
http://math.stackexchange.com/questions/165670/congruence-modulo-with-large-exponents




How to install google-chrome in redhat without redhat subscription

Install google-chrome in redhat  Download the .rpm file of chrome https://www.google.com/chrome/thank-you.html?installdataindex=empty&st...